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ABSTRACT
Plume-modified orogeny involves the interaction between a mantle plume and subducting 

oceanic lithosphere at accretionary margins. We propose that a plume can also be involved 
in collisional orogeny and accounts for the late Paleozoic geological relations in Central Asia. 
Continental collision between the Tarim and Central Tianshan–Yili blocks at the end Carbon-
iferous resulted in an orogeny lacking continental-type (ultra)high-pressure [(U)HP] rocks 
and significant syncollision surface erosion and uplift, features normally characteristic of 
continent-continent interactions. Their absence from the Tianshan region corresponded with 
the arrival of a mantle plume beneath the northern Tarim. Elemental and isotopic data reveal 
an increasing influence of the mantle plume on magmatic petrogenesis from ca. 300 to 280 Ma, 
immediately after collision at 310–300 Ma. The rising mantle plume interrupted the normal 
succession of collisional orogenic events, destroying the deeply subducted continental crust 
and hence preventing slab break-off–induced continental rebound. Plume-modified continen-
tal collision thus limited continental (U)HP rock exhumation and associated surface uplift.

INTRODUCTION
Oceanic convergent zones have been shown 

to be impacted by mantle plumes. The resul-
tant “plume-modified orogeny” is exemplified 
by ancient orogens in North America and east-
ern Australia (Murphy et al., 1998, 1999; Betts 
et al., 2012), and the present Tonga subduction 
zone and Samoa plume (Chang et al., 2016). 
Plume-slab interaction can cause prominent tec-
tonic changes such as flattening of the subduct-
ing slab, development of a slab window or slab 
break-off due to plume erosion, arc- to plume-
related magmatic transition, and supercontinent 
fragmentation (e.g., Murphy et al., 1998, 1999; 
Dalziel et al., 2000; Betts et al., 2012). In con-
trast to growing understanding of the interplay 
between a mantle plume and an oceanic subduc-
tion zone, the influences of a plume at a zone of 
continental collision have not been investigated. 
This study proposes such a case by providing 
age, geochemical, and isotopic evidence that 

the late Paleozoic continental collision orog-
eny in the western Tianshan and Tarim region 
in Central Asia was profoundly affected by the 
impingement of the Tarim mantle plume. In par-
ticular, such plume-collision interaction explains 
previously enigmatic features of the collisional 
orogen, i.e., the lack of continental-type (ultra)
high-pressure [(U)HP] rock suites and the ab-
sence of significant surface uplift during colli-
sion, and it extends our understanding of plume-
modified orogeny to collisional settings.

GEOLOGICAL OVERVIEW AND KEY 
ISSUES

The northern margin of the Tarim craton and 
the adjoining Tianshan region in Central Asia are 
an accretionary orogen that recorded the con-
sumption of the Paleozoic Paleo-Asian Ocean 
(Fig. 1; e.g., Windley et al., 2007; Cawood et al., 
2009; Charvet et al., 2011; Xiao et al., 2015; 
Zhao et al., 2018). In the late Paleozoic, oceanic 
subduction and closure resulted in collision be-
tween the Tarim craton and the Central Tianshan 

(CTS)–Yili block, forming the South Tianshan 
(STS) suture zone, which contains ophiolite 
relics and (U)HP metamorphic rocks (Fig. 1B; 
e.g., Gao et al., 2011; Han et al., 2011, 2016a; 
Klemd et al., 2011; Xiao et al., 2013; Bayet 
et al., 2018; Zhang et al., 2019). A final stage, 
involving north-directed oceanic subduction is 
evidenced by Carboniferous passive-margin 
deposition along the STS–northern Tarim and 
intense arc magmatism in the CTS-Yili block. 
The collision time is commonly suggested at ca. 
325–310 Ma, coinciding with the (U)HP meta-
morphism (e.g., Gao et al., 2011; Han et al., 
2016b; Loury et al., 2018; Zhang et al., 2019). 
A large igneous province (∼4 × 105 km2) in the 
Tarim and STS region includes ca. 300 Ma kim-
berlites near Bachu, ca. 295–285 Ma flood ba-
salts, and 285–265 Ma (ultra-)mafic intrusions 
and/or dikes, as well as rhyolites, granites, and 
syenites (Fig. 1B). These early Permian bimodal 
magmatic suites have been ascribed to the in-
cubation of a mantle plume beneath the Tarim 
lithosphere (e.g., Zhou et al., 2009; Xu et al., 
2014), as manifested by crustal uplift centered 
in Tarim at the Carboniferous-Permian transition 
(Li et al., 2014).

Current models for the Tarim and CTS-Yili 
collision invoke a classic Alpine-Himalayan–type 
belt, but this interpretation fails to reconcile the 
lack of continental-type (U)HP rock suites and the 
lack of significant upper-plate uplift in the CTS-
Yili region during collision. Such collision zones 
are normally characterized by intense and rapid 
surface uplift and exhumation of continental-type 
(U)HP rocks, mainly induced by break-off of the 
lower plate around the ocean-continent bound-
ary and prompt continental slab rebound, as the 
subducting dense oceanic slab fails to resist the *E-mail: gzhao@hkucc.hku.hk
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buoyancy of the continental crust (e.g., Davies and 
von Blanckenburg, 1995; van Hunen and Allen, 
2011; Zheng and Chen, 2016). In contrast, the 
South Tianshan belt preserves the world’s largest 
oceanic-type (U)HP terrane but lacks continental-
type counterparts (Fig. 1B; Zhang et al., 2019). 
The (U)HP units along the STS suture are sand-
wiched between greenschist belts and dominated 
by blocks/lenses of eclogites, blueschists, and mi-
nor ultramafic rocks embedded in garnet-bearing 
pelitic schists and marbles, derived from protoliths 
of oceanic crust and sedimentary rocks (Gao et al., 
1999; Klemd et al., 2011; Zhang et al., 2019). 
Evidence for negligible syncollision uplift and 
erosion includes (1) the accumulation of stable 
carbonates and fine clastic rocks in the foreland 
region (i.e., northern Tarim and STS) during late 
Carboniferous–early Permian time and the associ-
ated scarcity of coarse clastic sediments derived 
from an exhumed orogenic belt; and (2) the pau-
city of Permian postorogenic clastic detritus in the 
northern Tarim foreland basin from the CTS-Yili 
block, as revealed by rare 380–310 Ma detrital 
zircons, which contrasts with intense coeval mag-
matism in the CTS-Yili area (Han et al., 2016b). 
We consider these features to reflect modification 
of the collisional orogeny by the Tarim mantle 
plume (Han et al., 2016b; He et al., 2016).

METHODS
We evaluated the interaction between 

the  Tarim plume and the collision zone by 
 fingerprinting spatial and temporal variations 

in magma source characteristics, based on data 
from 330–260 Ma magmatic rocks in the Tarim 
and western Tianshan regions. This included 276 
radiometric ages (Table DR1 in the GSA Data 
Repository1), 1297 major- and trace-element 
analyses, and 515 whole-rock εNd(t) and 100 
zircon εHf(t) isotopic analyses (Table DR2), in-
cluding our new analyses from Tarim and STS 
(Tables DR2–DR5). We utilized elemental ra-
tios of Nb/Yb, Th/Yb, Nb/La, and Ce/Pb, and 
Nb anomalies as source proxies to differentiate 
plume-related magmatism with oceanic-island 
basalt (OIB) signatures and subduction-related 
(or subduction-inherited) magmatism with arc 
signatures. See the Data Repository for infor-
mation on the use of relevant elemental proxies 
and parameters, as well as for sample informa-
tion and analytical methods used in this study.

TEMPORAL RELATIONS BETWEEN 
CONTINENTAL COLLISION AND 
MANTLE PLUME

Although the main phase of continental col-
lision between the Tarim and CTS-Yili blocks is 
assumed to correspond with ca. 325–310 Ma (U)
HP eclogite-facies metamorphism in STS, this 

is at odds with the oceanic-crust origin for the 
(U)HP rocks outlined above. The (U)HP meta-
morphism indicates the persistence of oceanic-
slab subduction until ca. 310 Ma (Bayet et al., 
2018). We suggest continental collision at ca. 
310–300 Ma, corresponding to the main exhu-
mation stage of the (U)HP rocks (Klemd et al., 
2005). This inference accords with numerical 
modeling that suggests that (U)HP rocks were 
exhumed during the transition from oceanic to 
continental subduction, as is the case for the 
western Alps, New Caledonia, and Cuba (Agard 
et al., 2009; Burov et al., 2014). The 310–300 Ma 
collision is also supported by magmatic records 
in the region. Compiled crystallization ages of 
magmatic rocks indicate a quiescence between 
310 and 300 Ma along the southern part of the 
CTS-Yili block, particularly in the CTS region 
(Fig. 2A; Table DR1). Such a suppression of 
magmatic activity can be accounted for by the 
continental subduction of the Tarim cratonic 
margin beneath the southern CTS-Yili block. 
This interpretation coincides with a dramatic 
decrease of whole-rock εNd(t) and zircon εHf(t) 
values of magmatic rocks in the CTS domain (the 
upper plate), from juvenile to evolved signatures 
after the 310–300 Ma age interval (Fig. 2C; Table 
DR2). The prominent decrease of Nd-Hf isotopes 
implies a significant input of old continental ma-
terials into the magma source, probably inher-
ited from the subducted lower plate, i.e., Tarim 
continental crust commencing at 310–300 Ma.

In the Tarim region, the first sign of man-
tle plume–related magmatism occurred at ca. 
300 Ma, i.e., the extrusion of kimberlites in 
the Bachu area (Figs. 1B and 2A; Zhang et al., 
2013), which was followed by extensive, bi-
modal magmatism at ca. 295–265 Ma (Zhou 
et al., 2009; Xu et al., 2014). Thus, the ascent 
and arrival of the Tarim mantle plume head at 
ca. 300 Ma immediately succeeded continen-
tal subduction and collision between the Tarim 
and CTS-Yili block at 310–300 Ma. The age of 
ca. 300 Ma represents a synchronous magmatic 
initiation in the CTS, STS, and Tarim areas, af-
ter the 310–300 Ma magmatic lull in the CTS 
(Fig. 2A), implying a petrogenetic link between 
these early Permian magmatic suites.

MAGMATIC-ROCK ELEMENTAL AND 
ISOTOPIC EVIDENCE

Source characteristics of early Permian mag-
matic rocks (300–280 Ma) exhibit a systematic 
variation with space and time, as shown by the 
proxies of Nb/Yb (Fig. 2B), Nb/La, and Ce/Pb 
ratios, and Nb anomalies (Fig. DR1). Spatially, 
these values are most elevated and comparable 
to OIBs for rocks in the Bachu area in western-
central Tarim to the south, and they progressive-
ly decrease to arc-like signatures in the Yili area 
to the north (Fig. DR1). From plume  initiation 
at ca. 300 to a magmatic climax at 290–280 Ma, 
the elemental proxies for magmatic rocks in 

1GSA Data Repository item 2019357, compiled 
data (Tables DR1 and DR2), sample and method 
descriptions and notes for elemental proxies, and ana-
lytical results (Tables DR3–DR5), is available online 
at http://www.geosociety.org/datarepository/2019/, or 
on request from editing@geosociety.org.
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the CTS, STS, and Tarim areas gradually in-
creased from arc-like to typical OIB-like fea-
tures (Fig. 2B; Fig. DR1). Similar trends can 
be observed from magmatic rock εNd(t) values, 
which were mostly negative and increased from 
300 to 285 Ma toward the Bachu magmatic 
suites, which have more elevated εNd(t) values 
(−1 to +6; Fig. 2C). Zircon saturation tempera-
tures of the Permian magmatic rocks in the CTS, 

STS, and Tarim areas gradually increased from 
ca. 300 to 285 Ma, with comparably higher tem-
peratures (mostly >800 °C) than those of rocks 
older than 300 Ma (Fig. 2D). Thus, the consis-
tent variation and gradual transition in elemental 
ratios, Nd and Hf isotopes, and zircon saturation 
temperatures suggest that: (1) the Tarim mantle 
plume, with a center near Bachu, most likely 
influenced the sources and origin of Permian 
magmatism, not only in the Tarim, but also in 
the STS and CTS areas; and (2) the magnitude 
of the plume’s influence varied temporally and 
spatially, increasing from ca. 300 to 280 Ma but 
weakening to the north.

The Nb/Yb versus Th/Yb plot (Fig.  3A) 
shows that the early Permian magmatism in 
the CTS and STS lies in the transitional field 
between the Bachu magmatic suites with an OIB 
signature and the Yili rock suites with a conti-
nental arc/crust signature. Nd-Hf isotopic de-
coupling is evident for Permian magmatic rocks 
in the CTS and STS (Fig. 3B), implying a “zir-
con effect” due to the addition of subducted oce-
anic terrigenous sedimentary rocks into magma 
sources (Bayon et al., 2009). These features sug-
gest that the Permian magmatism in the CTS and 
STS was derived from mixed sources because of 
the interaction between plume-induced and post-
collisional, arc-inherited magmatic processes.

The (La/Yb)N ratios (Fig. 2E; where N de-
notes chondrite-normalized values, SiO2 = 55–
70 wt%), which can constrain the depth of par-
tial melting and crustal thickness (Profeta et al., 
2015; Hu et al., 2017), suggest a normal crust 
(∼30–40 km thick) in the CTS-Yili area in the 
Carboniferous but a thicker crust (∼50–60 km) 
for the CTS domain in the earliest Permian. 
Such crustal thickening of the upper plate likely 
resulted from the continental collision between 
the Tarim craton and the CTS-Yili block at 310–
300 Ma. Magmatic rocks in the CTS and STS 
have their highest (La/Yb)N ratios at ca. 300 Ma 
and decrease at 290–280 Ma, implying crustal 
thinning (Fig. 2E). This is compatible with the 
plume incubation model of Xu et al. (2014), 
which suggests an early-stage plume incubation 
at deeper levels and late-stage adiabatic decom-
pression melting during the plume upwelling.

THE NEW MODEL
The temporal, spatial, and petrogenetic re-

lations of late Paleozoic magmatism in Tarim 
and western Tianshan enable us to link the con-
tinental collision orogeny with the arrival of 
the mantle plume head at the end of the Car-
boniferous (Fig. 4). At 310–300 Ma, collision 
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between the Tarim and CTS-Yili blocks closed 
the STS ocean, leading to the subduction of the 
Tarim continental margin (Fig. 4A). In nor-
mal collisional zones, the buoyancy contrast 
 between continental and oceanic crust results 
in slab break-off at the lithospheric transi-
tion, enabling rapid rebound of buoyant con-
tinental lithosphere, and causing exhumation 
of continental-type (U)HP rocks and intense 
surface uplift, such as recorded in the western 
Alps, Himalaya, and Dabie-Sulu (e.g., Da-
vies and von Blanckenburg, 1995; Zheng and 
Chen, 2016). Numerical modeling suggests 
an ∼10–25 m.y. interval between initial con-
tinental collision and later slab break-off for 
a normal oceanic slab (van Hunen and Allen, 
2011). However, for the northern Tarim cra-
ton, we infer that continental subduction and 
collision along the STS suture at 310–300 Ma 
were interrupted, prior to slab break-off, by the 
ascending Tarim mantle plume at ca. 300 Ma. 
During the plume incubation stage (Fig. 4B), 
the thermal-chemical-mechanical erosion/in-
cision by the rising plume likely destroyed or 
possibly broke the deeply subducting conti-
nental crust, preventing the exhumation of the 
continental-type (U)HP rocks. Recent seismic 
data have revealed discontinuous high-density-
velocity bodies at 100–200 km depth beneath 
northern Tarim and STS (see Deng et al., 2017, 
their figure 6A), possibly representing the de-
tached Tarim lithosphere. The lack of rebound 
of the subducting continental crust resulted in 
no significant surface uplift.

The model of “plume-modified orogeny” 
was proposed to primarily depict the interac-
tion between a mantle plume and an oceanic 
subduction zone along accretionary orogens 
(e.g., Murphy et al., 1998, 1999; Dalziel et al., 
2000; Betts et al., 2012; Chang et al., 2016). 
The relatively short duration of continent-con-
tinent collision compared with the long history 
of convergent plate margins and accretionary 
orogens results in the infrequent encounter of a 
mantle plume with an active continental colli-
sion zone. The proposed scenario in Tarim and 
western Tianshan may provide a new example 
of plume-modified continental collision orog-
eny. Recently, Faure et al. (2018) proposed that 
the interaction of the late Permian Emeishan 
mantle plume near the boundary of the South 
China and Indochina blocks could account for 
the (ultra)high-temperature rock suites in cen-
tral Vietnam due to plume-induced slab break-
off during continental collision. The influence 
of a mantle plume on an active continental col-
lisional orogen will fundamentally change the 
course of orogenesis and its tectonomagmatic 
expression, and hence it provides further in-
sight into the spectrum of features recorded 
within these dynamic zones of lithospheric 
interaction.
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