Origin of the Xiaohekou skarn copper deposit and related granitoids in the Zha-Shan ore cluster area, South Qinling, China

State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi’an 710069, China

A R T I C L E I N F O

Keywords:
Xiaohekou skarn Cu deposit
Thickened lower crust
Oxygen fugacity
Enriched lithospheric mantle-derived magmas
Qinling intracontinental orogeny

A B S T R A C T

The Xiaohekou copper deposit is one of the few typical skarn-type, commercial deposits in the Zha-Shan ore cluster area in the eastern part of South Qinling. The ore-related granitoids in the Xiaohekou mining district include a number of small plutons of granodiorite porphyry and granite porphyry, as well as numerous dykes. They are characterized by relatively low SiO₂ (65.9–73.3 wt%) and MgO (0.26–7.2 wt%) contents, variable Mg# (29.4–64.0) values, high K₂O (3.11–5.75 wt%) content and negligible 87Sr/86Sr (1.00–1.15) values. The samples also exhibit depletion in Cr, Ni, Nb, Ta, and Ti content, and high Sr/Y (46.6–64.7) and La/Yb (17.0–25.0) ratios. These features are similar to those of high-K calc-alkaline adakite-like magma formed by partial melting of thickened lower crust in continental collision zones or intracontinental settings. The majority of the samples have T_reion(Hf) of 1.5–1.2 Ga, corresponding to weakly negative ε_Hf(t) values (−4.75 to −0.13) typical of crustal material, but more than one quarter have T_max(Hf) of 0.80–0.71 Ga, corresponding to positive ε_Hf(t) values of +0.07 to +2.45, indicating that the granitoids resulted from partial melting of Mesoproterozoic lower crustal rocks with significant input from enriched lithospheric mantle-derived magmas. Zircons from the Xiaohekou granitoids have ΔFMQ values concentrated around −0.62 to +5.54, most of which show the magma/O₂ of FMQ to HM, in accordance with the widespread occurrence of magnetite, hematite and specularite in the Xiaohekou skarn system, which is an indicator of relatively high O₂ for a magmatic-hydrothermal system. The granitoids exhibit similar or even higher Ce⁴⁺/Ce³⁺ (average of 452) and Eu/Eu* (average of 0.72) values in comparison with those of fertile Cu deposits worldwide, indicating that the Xiaohekou granitoids may possess the potential to form a large magmatic-hydrothermal Cu deposit. Zircons of the granitoids show obvious positive correlations between oxidation indices (Ce and Eu anomalies, Ce⁴⁺/Ce³⁺ ratios, and ΔFMQ values) and ε_Hf(t) values, implying the involvement of an oxidized mantle component which might have caused the O₂ elevation and played an important role in the formation of Cu deposits. The zircon U–Pb ages (141.3 ± 1.3 and 138.1 ± 2.0 Ma) of the Xiaohekou ore-related granitoids obtained in this study are similar to the zircon U–Pb and molybdenite Re–Os ages yielded from porphyry Mo mineralization at the Chigou and Lengshuigou deposits in the Zha-Shan ore district, indicating that they are possibly part of a single tectonic, magmatic, and metallogenic event in the Yanshan orogeny. The ore-related granitoids in the Xiaohekou area were formed in a post-collisional compression-extension transition regime during the Early Cretaceous Qinling intracontinental orogeny. The orogeny represents a composite orogenic belt, which underwent four major episodes of accretion and collision between different continental blocks, including the subduction/accretion Grenvillian orogeny along the northern SCB, Paleozoic orogeny along the Shangdan suture, Triassic collisional orogeny along the Mianlue suture zone, and Late Mesozoic to Cenozoic intracontinental orogeny (Dong and Santosh, 2016). Accompanying the intracontinental orogeny, a major event of tectonics,

1. Introduction

The E–W trending Qinling Orogen is sandwiched between the North China Block (NCB) and the South China Block (SCB) and links the Dabie Mountains to the east and the Qilian and Kunlun Mountains to the west (Fig. 1A) (Ames et al., 1996; Zhang et al., 2001; Dong and Santosh, 2016). Detailed investigations have shown that the Qinling Orogen represents a composite orogenic belt, which underwent four major episodes of accretion and collision between different continental blocks, including the subduction/accretion Grenvillian orogeny along the northern SCB, Paleozoic orogeny along the Shangdan suture, Triassic collisional orogeny along the Mianlue suture zone, and Late Mesozoic to Cenozoic intracontinental orogeny (Dong and Santosh, 2016). Accompanying the intracontinental orogeny, a major event of tectonics,
Fig. 1. Geological map of the Qinling Orogen, showing the distribution of the Mesozoic granitoids and major deposits (Modified after Wang et al., 2015a).

magmatism and metallogeny occurred in the Qinling Orogen, which makes the Eastern Qinling Orogen along the southern margin of the NCB (S-NCB, Fig. 1B) the most important molybdenum repository in the world, with 8.43–8.9 Mt of Mo and > 90% of Mo metal resource from granitic stock-related porphyry and porphyry–skarn deposits aged 160–105 Ma (Stein et al., 1997; Li et al., 2007b, 2018; Mao et al., 2008, 2011; Zeng et al., 2013). Previous investigations mainly focused on the geological and geochemical characteristics, precise ages, and tectonic settings of these deposits in the S-NCB (e.g., Stein et al., 1997; Chen et al., 2000; Zhu et al., 2010; Mao et al., 2008, 2011; Li et al., 2012a,b,c; Wang et al., 2011a, 2015a; Yang et al., 2012, 2015; Bao et al., 2014; Deng et al., 2017; Guo et al., 2018). Only a few magmatic-hydrothermal ore deposits have been identified in the Zha-Shan (Zhanshui and Shanyang Counties, Shaanxi Province) area, in the South Qinling Orogen (SQO) (Fig. 1B and 2), and research related to these deposits has only rarely been reported (Xie et al., 2017).

In recent years, comprehensive investigations including geology, large-scale geological mapping, geochemical anomaly, remote sensing, high-precision magnetic scanning and controlled source magnetotelluric surveys in the Zha-Shan ore cluster area carried out by the Northwest Mining and Geological Exploration Bureau for Nonferrous Metals have resulted in the discovery of Cu-Mo-Au orebodies in the Late Jurassic–Early Cretaceous (e.g., Zhang et al., 1989; Wu, 1993; Wang et al., 2011a, 2015a; Yang et al., 2012, 2015; Bao et al., 2014; Deng et al., 2017; Guo et al., 2018). Several mineralized hydrothermal alterations and porphyry deposits related to these deposits have recently been conducted (Xie et al., 2015, 2017). Although the Xiaohekou Cu deposit was discovered during the 1970s, the degree of geological research is still low at present – petrological and zircon U-Pb chronological study on the granitoids in the Xiaohekou mine are available only in Chinese publication (e.g., Zhang et al., 1989; Wu, 2013). Information on deposit geological characteristics, the genesis of mineralization-related intrusions and the evaluation of metallogenic potential for the Xiaohekou deposit are still lacking. In recent years, magma oxygen fugacity (fO2) have been advocated to be one of the key factors controlling the magmatic-hydrothermal mineralization (e.g., Carroll and Rutherford, 1987; Meinert, 1992; Ballard et al., 2002; Richards, 2003; Mengason et al., 2011; Trail et al., 2012; Sun et al., 2013, 2015; Dilles et al., 2014), because elevated fO2 can destabilize sulfides and release chalcophile elements (e.g., Cu and Au) to the interacting melt/supercritical fluid (Richards, 2003; Jugo et al., 2010; Botcharnikov et al., 2011; Wilkinson, 2013). Zircon is ubiquitous in most calc-alkaline intrusions and resistant to subsolidus alteration. Thus, the zircon Ce4+/Ce3+ and ΔFMQ value have become useful tools for evaluating the economic potential of porphyry–skarn Cu–Mo–Au mineralization (e.g., Ballard et al., 2002; Liang et al., 2006; Trail et al., 2012; Wang et al., 2013a, 2015c; Xu et al., 2016; Cao et al., 2018).

In this study, we carry out detailed geological study of the Xiaohekou skarn Cu deposit and present the integrated analyses of in situ U-Pb dating, Hf isotope, and trace element (Ti, Th, U, Hf, and rare earth elements) data from zircons and rock major and trace element geochemistry of mineralization-related intrusions. We first aim to constrain the timing, source, petrogenesis, and mechanism of Cu enrichment in granitoids of the Zha-Shan ore cluster area. The other aim of this work is to establish prospecting criteria of fO2 for distinguishing between fertile and barren granitoids in the Zha-Shan ore cluster area.

2. Geologic background

The tectonic framework of today’s Qinling Orogen is composed of three crustal units separated by two suture zones (Fig. 1). From north to south, these are the S-NCB, the Shangdan suture zone, the South Qinling Orogen (SQO), the Mianlue suture zone, and the N-SCB (Zhang et al., 2001; Dong and Santosh, 2016). A brief overview focusing on the SQO is given below.

Situated between the Shangdan Tectonic Zone to the north and the

Fig. 2.
Mianlue suture zone to the south, the SQO is characterized by a series of south-vergent thrusts and folds of an imbricated thrust-fold system (Zhang et al., 2001). The basement, as represented by the Douling and Xiaomoling Complexes and the Wudang and Yalonghe Groups, is dominated by the Neoproterozoic volcano-sedimentary assemblages that were deposited in rift-type or subduction-related basins and metamorphosed under greenschist facies conditions (Ling et al., 2008). Recent geological and chronological studies have detected a series of Neoproterozoic basement terrains with mafic to felsic intrusive rocks in the middle and western segments of the SQO, such as the Mihunzhen and Lengshuigou intrusions (Fig. 2), constituting an E–W-trending Neoproterozoic uplift zone (Hu et al., 2016). The sedimentary cover includes Sinian clastics and carbonate rocks, Cambrian–Ordovician limestones, Silurian shales, and Devonian to Carboniferous clastic rocks and limestones. A few remnants of the Upper Paleozoic—Lower Triassic clastic sedimentary rocks are also distributed across the northern part of the SQO (Zhang et al., 2001).

Sedimentary strata in the Zha-Shan ore cluster area mainly comprise 6800- to 18,000-m-thick Devonian Liuling Group and Lower Carboniferous Eryuhe Formation (Fig. 2). The Liuling Group comprises marine clastic-carbonate-barite strata and a greenschist facies of sandstone, siltstone, and shale, along with minor conglomerate units, and is divided from bottom to top into Middle Devonian Niuerchan, Chigou, and Qingshiya Formations and Upper Devonian Xiadonggou Formations (Fig. 3). The Devonian Qingshiya Formation crops out in the north. Orebodies in the deposit are generally hosted by carbonate and marble (Figs. 3, 4, and 6). These SEDEX-type (or later overprinted by tectono-hydrothermal processes) Cu–Ag–Pb–Zn–Fe deposits (e.g., Daxigou, Yindongzi, and Mujiazhuang; Fig. 2) were hosted in the Devonian Qingshiya Formation (Wang et al., 2010; Liu et al., 2015; Zhan et al., 2019). Three magmatism stages are recognized in the Zha-Shan ore cluster area, i.e., the Late Neoproterozoic (878–635 Ma), Late Triassic (225–210 Ma) and Late Mesozoic (150–140 Ma) (Fig. 2). Late Neoproterozoic magmatism appeared sparsely along the Shanyang–Fengzhen Fault and is presented by Li-jiabian diabase-gabbro, Banbanshan potash granite, and Lengshuigou quartz diorite + albite + granite (Wu et al., 2012; Xie et al., 2017). Large Triassic granitic batholiths (Dongjiangkou, Zhashui, Shahewan, and Caoping) are exposed to the northwest of the Zha-Shan area and mainly comprise rapakivi, monzogranite porphyry, and granodiorite porphyry (Li et al., 2015 and references therein). The Devonian Chigou, Qingshiya, and Xiaodonggou Formations are the main hosts for porphyry-skarn Cu (Mo) systems and Late Mesozoic granitoids within the Zha-Shan district. These units are overprinted extensively by hornfels and skarn alternating along the contact between the Xiaohekou, Yuanjiagou Chigou, Shuangyangou, Tudigou, Yuanzijie, Xiangfangan, Baishagou, and Lengshuigou granitic stocks and Devonian strata (Fig. 2). These granitic stocks are composed dominantly of high-K calc-alkaline I-type diorite to granodiorite porphyry with minor granite porphyry (Wu, 2013; Wang et al., 2015b; Ren et al., 2014; Yan et al., 2014; Xie et al., 2015, 2017), and accompanied by minor amounts of cryptoexplosion breccia (Wang et al., 2010).
2014) and cut by NW-trending sinistral strike-slip faults. The Xiaohekou granitoids intrude into the intersections of these faults (Figs. 2 and 3). Most orebodies were developed in interlayered shear or fracture zones near the contacts between granitoids and strata (Fig. 4).

3.2. Alterations and mineralization stages

Wall rocks in the Xiaohekou skarn Cu deposit have experienced various types of strong alteration. Skarn-style alteration, silicification, and carbonatization are widely developed in exo-contact zones between granitoids and Devonian strata of the Tongyusi Formation (Fig. 6). Cu mineralization is spatially and temporally associated with pervasive skarn-type alteration zones (Fig. 4), which produce calc-silicates including prograde and retrograde skarn assemblages. The prograde skarn is mainly composed of anhydrous skarn (e.g., garnet and diopside) minerals (Figs. 5 and 6B, E, I, G). The retrograde skarn (hydrous skarn) consists of actinolite, epidote, and chlorite, which were alteration products of early stage skarn minerals (Fig. 6F, G and H). The quartz-polymetallic sulfide stage is the main Cu mineralization stage, including the deposition of chalcopyrite, pyrite, pyrrhotite, bornite, molybdenite, and quartz (Fig. 6C). These sulfides typically surround garnet, fill the fractures in skarn (Fig. 6D and M), or cut the skarn and magnetite as veins, indicating that the Cu mineralization occurred later than stages (1) and (2). Calcite and quartz mark the final stage, with minor deposition of bornite, pyrite, and chalcopyrite. These minerals occur as veins crosscutting the early skarns and quartz-polymetallic sulfide veins (Fig. 6E) or filling interstices and intergranular spaces of skarn and metallic minerals (Fig. 6J and P).

3.3. Orebodies and mineralogy

A total of 10 economic orebodies have been detected in the deposit and all of them were developed in the skarn and marble in exo-contact zones of granitoids. Orebodies are stratiform, stratoid, lenticular, and vein-like that are north-striking with dips of 48°–55°, and generally parallel to the strata (Fig. 4). The orebodies have lengths of 63–336 m and varied thicknesses of 0.66–3.27 m, are continuously distributed and extend 24–75 m downward. They pinch out in the skarn or marble. The orebodies are mainly Cu orebodies with a grade of 0.85% to 3.62% Cu, followed by Cu–Fe orebodies. Metallic mineral compositions are complex and predominantly chalcopyrite, pyrite, magnetite, pyrrhotite, molybdenite, specularite, and hematite, with minor marcasite.
sphalerite, galena, siderite, chalcocite, and electrum. Associated gangue minerals include garnet, diopside, feldspar, actinolite, epidote, chlorite, quartz and calcite (Fig. 6).

According to ore mineral assemblage, ores can be subdivided into three subtypes, as follows: (1) Chalcopyrite ores, the most important Cu-bearing mineral in the Xiaohekou mining district, occur as massive and disseminated subhedral grains with other sulfides (including pyrite, molybdenite, and minor pyrrhotite, sphalerite, and galena) in quartz veins. The ores also can be seen in the intergranular spaces of garnet and diopside and replace garnet (Fig. 6I and M). Molybdenite, as a by-product, occurs as fine flake aggregates and thin veins in diopside–garnet skarn (Fig. 6O). (2) Cu-bearing pyrrhotite ores (Fig. 6N), with a grade of > 2.0% Cu, exist in diopside and diopside–garnet skarns. The main metallic minerals include chalcopyrite and pyrrhotite, followed by pyrite and galena. Anhedral chalcopyrite and pyrrhotite commonly wrap euhedral pyrite, showing typical poikilitic texture. These ores occur in the forms of massive aggregates, dense disseminations, and veinlets with widths of 0.3–0.8 cm. (3) In Cu-bearing magnetite ores, magnetite forms the earliest and replaces skarn minerals showing a metasomatic relict texture (Fig. 6G). Chalcopyrite and pyrite commonly occur as disseminated spots distributed in magnetite or as a banded structure distributed parallel to magnetite. This type of ore is characteristic of a magnetite + chalcopyrite + pyrite assemblage, which usually occur in bands intercalated with garnet in skarn.

3.4. Lithology of the granitic intrusions at the deposit

Compared with the country rocks, granitic intrusions are generally fresh with only slight hydrothermal alteration. Detailed field and petrographic studies illustrate that intrusive rocks in the Xiaohekou mining district are of granodiorite porphyry and granite porphyry. The intrusive rocks are mainly exposed in E–W-trending belts and are present as small apophyses and dykes with widths not more than 0.2 km and lengths of 0.7–1.0 km, intruding the Tongyusi (D3ty) and Qingshiya (D2q) Formations (Fig. 7B). Granodiorite porphyry, the main rock type in the area, has an off-white color, porphyritic texture and massive structure (Fig. 6A and 7C). Phenocrysts are euhedral plagioclase (15–20%), amphibole (5–10%), subhedral quartz (< 5%), and minor K-feldspar (< 3%) and biotite (< 3%), with sizes of 0.3–2 mm (Fig. 7E–G). The matrix exhibits fine-grained granular and felsitic textures, consisting of 20–25% plagioclase, 10–15% K-feldspar, 5–10% amphibole, and 5–8% quartz. Accessory minerals include apatite, spherne, zircon, and magnetite. Granite porphyry has a pale red color, a massive texture, and a porphyritic texture (Fig. 7D). Phenocrysts are euhedral lath-shaped K-feldspar (5–10%), with sizes of 0.5–2 mm, and euhedral to subhedral quartz (5–10%) with hexagonal bipyramid texture, with sizes of 0.5–1.5 mm (Fig. 7H and I). The matrix exhibits a fine-grained texture and is composed of K-feldspar (30–40%), plagioclase (30–35%), quartz (25–30%), and biotite (< 5%).

Fig. 4. Geologic cross section through the Xiaohekou skarn Cu deposit, showing the spatial relationships among strata, intrusions, skarn and orebodies (modified after Shaanxi Mineral Resources and Geological Survey, 2013).
4. Sampling and analytical methods

In the Xiaohekou mining district, five samples of granitic intrusions were collected from both underground tunnels at 860 m depth, and from the surface. Samples XH3, XH4, XH5, and XH6 are from granodiorite porphyry. Sample XHX12 is granite porphyry (Table ES1).

4.1. Major and trace elements

The fresh portions of whole-rock samples were cleaned, powdered to < 200-mesh using a crusher machine made of tungsten carbide and then dried for analysis. Major and trace elements were measured at the Key Laboratory of Continental Dynamics of Northwest University, Xi’an, China. Major oxides were determined by using X-ray fluorescence (RIX2100X sequential spectrometer) on fused Li-borate glass beads, with BCR-2 and GBW07105 as reference materials. For trace element analysis including rare earth elements (REE), sample powders were loaded into high-pressure Teflon bombs, with HF + HNO₃ mingling added. The bombs were put into a stainless steel sleeve for digestion at 190 °C for 48 h. Trace and REE elements were analyzed using an Agilent 7500a ICP-MS. The standards BHVO-2, AGV-2 and BCR-2 were used for analytical control.

4.2. Zircon U–Pb age and trace elements

Two representative samples XH5 and XHX12 were selected for in-situ zircon U-Pb, trace elements, and Lu-Hf isotope analyses. These analyses were performed at the State Key Laboratory of Continental Dynamics, Northwest University, Xi’an, China. Zircon grains were extracted by heavy liquid and magnetic separation techniques, and handpicked under a binocular microscope. They were mounted in epoxy blocks and polished to obtain a smooth surface, and then cleaned using 3% HNO₃ to remove lead contamination prior to LA-ICP-MS analysis. Cathodoluminescence (CL) images were taken on a Quanta 400 FEG scanning electron microscope from FEI (USA) equipped with a Mono CL3+ cathodoluminescence spectroscope. Zircon U–Pb ages and trace elements were obtained using a GeoLas 2005 Laser Ablation (Coherent, USA) coupled to an Agilent 7500a ICP-MS. The diameter of the laser ablation crater was 32 µm. The detection limits of zircon trace elements are generally < 0.01 ppm. According to the reflected light and CL images (Fig. 10), we chose zircons with similar oscillatory zones avoiding cracks and tiny inclusions as far as possible. Harvard zircon 91,500 and GJ-1 were used as the external calibration standards and silicate glass NIST SRM610 as a standard to calculate element concentrations. The GLITTER 4.4 V program (Jackson et al., 2004) was used for processing acquired data. The U-Pb ages were calculated using ISOPLOT 3.0V (Ludwig, 2003). The detailed analytical methods are based on Yuan et al. (2004).
4.3. Zircon Lu–Hf isotope

In-situ Lu–Hf analysis for zircons was carried out using the same laser system coupled with a Nu Plasma HR (Wrexham, UK) MC-ICP-MS. The instrumental conditions and data acquisition were described by Yuan et al. (2008). The analyses were conducted with a 44 μm ablation spot size. Harvard 91500 and GJ-1 were used as reference standards during analyses. The decay constant for 176Lu of 1.867 × 10^{-11} yr^{-1} (Söderlund et al., 2004) and measured 176Lu/177Hf were used to calculate initial 176Hf/177Hf ratio. A chondritic reservoir with 176Hf/177Hf of 0.0336 and 176Lu/177Hf of 0.282785 (Bouvier et al., 2008) were used to calculate εHf(t) values. Single-stage Hf model ages (TDM1) are calculated relative to the depleted mantle with a present-day 176Hf/177Hf ratio of 0.28325 and 176Lu/177Hf of 0.0384, and two-stage Hf model ages (TDM2) are calculated by assuming a mean 176Lu/177Hf value of 0.015 for the average continental crust (Vervoort and Blichert-Toft, 1999).

5. Result

5.1. Whole-rock geochemistry

The major and trace element compositions of nine granitoid samples from the Xiahekou intrusions are presented in Table ES1, of which the data of four samples are compiled from Wu (2013). The major element compositions have only a slight variation with medium SiO$_2$ (65.9–73.3 wt%) and Al$_2$O$_3$ (13.0–15.4 wt%) contents, high K$_2$O (3.11–5.75 wt%), K$_2$O + Na$_2$O (5.84–8.95 wt%), and K$_2$O/Na$_2$O ratios (0.74–63.9, average of 6.08), and low P$_2$O$_5$ (0.06–0.28 wt%) and TiO$_2$ (0.09–0.48 wt%) contents. These granitoids have MgO contents ranging from 0.26 wt% to 1.72 wt% (average of 1.02 wt%) and variable Mg# values ranging from 29.4 to 64.0 (average of 6.08). Fig. 8A and B show that the Xiahekou intrusions are typical metaluminous to weakly peraluminous (A/CKN = 0.81–1.01, average of 0.95, except for sample XH3), similar to the high-K calc-alkaline I-type granites. The P$_2$O$_5$ contents decrease with SiO$_2$ increase (Fig. 5C), consistent with the I-type magma evolution trend (Chappell, 1999; Li et al., 2007a).

With a total REE concentration of 42.4–144 µg/g, the Xiahekou granitoids display the chondrite-normalized REE distribution patterns Fig. 6.
characterized by right-inclined \([\text{LREE/HRREE} = 6.9-13.4; (\text{La}/\text{Yb})_N = 5.60-17.1]\] enriched LREE and flat HREE patterns \([(\text{La}/\text{Sm})_N = 3.50-5.30; (\text{Gd}/\text{Yb})_N = 1.1-2.2]\] (Fig. 9A). Except for sample XH4 (\(\delta\text{Eu} = 0.89\)), most of the granitoids yield weakly positive Eu anomalies (\(\delta\text{Eu} = 1.00-1.15\)) (Fig. 9; Table ES1). On the mantle-normalized multielement diagrams (Fig. 9B), the Xiaohekou granitoids basically show no difference from one another with pronounced relative enrichment of Rb, Ba, U, Pb, and K and depletion of Ta, Nb, Sr, P, and Ti, similar to those of granite originating from the melting of ancient crust (Sun and McDonough, 1989). The rock samples (except for samples XH3 and XH4) yield high \(\text{Sr/Y} (46.6-64.7)\) and \(\text{La/Yb} (17.0-25.0)\) ratios and low Y and Yb contents (9.6-16.2 ppm and 0.95-1.75 ppm, respectively) (Table ES1; Fig. 13A,B), indicating that the Xiaohekou granitoids have adakitic affinities (Defant and Drummond, 1990; Moyen, 2009).

5.2. Zircon U–Pb ages and trace elements

The LA-ICP-MS zircon U–Pb dating results of 41 spots for 2 samples are summarized in Table ES2 and shown in Fig. 10. Most zircons are colorless or pale yellow, transparent and euhedral with columnar crystal forms and 100–400 \(\mu\text{m}\) in length. In representative CL images, most zircons exhibit clear oscillatory zoning. Analyses of 21 spots from sample XH5 yield Th and U concentrations of 28.2–456 and 39.5–947 ppm, respectively, with the Th/U ratios of 0.21–1.16 (average of 0.47). A total of 15 analysis spots yield a...
weighted mean age of 141.3 ± 1.3 Ma (MSWD = 2.5), which can be interpreted as the crystallization age of granodiorite porphyry. Meanwhile, six analysis spots yield older 206Pb/238U ages of 492–922 Ma as inherited components. A total of 24 spots from sample XHX12 yield Th and U concentrations of 43.7–619 and 211–1838 ppm, respectively, with the Th/U ratios of 0.91–7.19, indicating a magmatic origin for the zircons (Hoskin, 2005). A total of 22 analysis spots yield a weighted U–Pb zircon age of 138.1 ± 2.0 Ma (MSWD = 2.3), which can be interpreted as the timing of crystallization for the granite porphyry. Two analysis spots have 206Pb/238U ages of 654 and 545 Ma, reflecting contamination by the Neoproterozoic basement rocks. Zircons with U–Pb ages of ~140 Ma from the Xiaohekou intrusions are prominently enriched in HREE relative to LREE, with positive Ce and negative Eu anomalies (Fig. 11), which are common features of magmatic zircons in igneous rocks (Hoskin, 2005). The Ti content in zircons from samples XH5 and XHX12 are 1.25–5.49 (average of 3.54 ppm) and 1.23–29.6 ppm (average of 4.75 ppm), respectively.

5.3. Magma oxygen fugacity estimated using Ce⁴⁺/Ce³⁺ and ΔFMQ

Generally, Ce in zircons is a relatively sensitive and robust measure of the magmatic oxidation state due to multiple ionic states. Qualitative and quantitative estimates of fO2 using zircon Ce⁴⁺/Ce³⁺ ratios and ΔFMQ values are helpful in determining fO2 in our study. The theories for calculating these ratios are proposed by Ballard (2002) and Trail et al. (2012). The Ce⁴⁺/Ce³⁺ ratios are calculated on the basis of a lattice strain model (Blundy and Wood, 1994) for zircon–melt partitioning of Ce⁴⁺ and Ce³⁺ cations, assuming that the element

![Fig. 9](image_url)
(A) Chondrite-normalized REE patterns and (B) primitive mantle-normalized multi-element spider diagrams for the Xiaohekou ore-related granitoids.

![Fig. 10](image_url)
Figure 10. Cathodoluminescence images and LA-ICP-MS zircon U–Pb concordia diagrams of ore-related granitoids.
concentrations in the melt are equal to those in the bulk rock (Ballard et al., 2002). The Ti-in-zircon thermometer (Ferry and Watson, 2007) is employed to estimate zircon crystallization temperature (T_{zircon}) by setting the activities of SiO$_2$ and TiO$_2$ to 1 and 0.6, respectively (Qiu et al., 2013). ΔCe is computed with La–Nd interpolation. The introduction of a specific mineral oxidation buffer for fayalite–magnetite–quartz (FMQ buffer) yields the following expressions:

$$ FMQ \text{ buffer} = -24,441.9/\left(T + 273 \right) + 8.290 \quad (\pm 0.167) $$

$$ \Delta FMQ = \log_{10} O_2 - FMQ \text{ buffer.} $$

Zircons of samples XH5 and XHX12 have crystallization temperatures of 617–738 °C (average of 691 °C) and 616–922 °C (average of 695 °C), respectively. The calculated zircon ΔFMQ values for samples XH5 and XHX12 are -10.3 to $+8.82$ (average of $+2.12$) and -9.78 to $+7.38$ (average of $+0.50$). The Ce$^{4+}$/Ce$^{3+}$ ratios are 33–736 (average of 419) and 101–882 (average of 484), respectively (Table ES3).

5.4. Zircon Lu–Hf isotopes

In situ–Hf isotopic compositions of zircon grains are presented in Table ES4 and Fig. 12. A total of 12 zircons with the weighted mean age of 141 Ma from sample XH5 have $^{176}\text{Hf}/^{177}\text{Hf}$ ratios of 0.282602–0.282760, which computed the $\epsilon_{\text{Hf}}(t)$ values from -3.06 to $+2.45$ (average of -0.62), with corresponding T_{DM2} values of 1.4–1.0 Ga (average of 1.2 Ga). A total of 15 zircons with a mean age of 138 Ma from sample XHX12 have $^{176}\text{Hf}/^{177}\text{Hf}$ ratios of 0.282550–0.282727 and yielded the $\epsilon_{\text{Hf}}(t)$ values from -4.75 to $+1.22$ (average of -0.86), with corresponding T_{DM2} values of 1.5–1.1 Ga (average of 1.2 Ga).

6. Discussion

6.1. Petrogenesis of the ore-related granitoids in the Xiaohekou Cu deposit

The mineralization-related granitoids in the Xiaohekou mining district are characterized by relatively low SiO$_2$ (65.9–73.3 wt%) and MgO (0.26–1.72 wt%) contents with variable Mg$^+$ values (29.4–64.0), high K$_2$O (3.11–5.75 wt%) content and K$_2$O/Na$_2$O ratios (0.74–63.9, average of 6.08), and negligible Eu anomalies (δEu = 0.89–1.15), which indicate that slight plagioclase fractional crystallization occurred after the initial melt was formed. The samples also exhibit depletion in compatible elements, such as Cr (2.89–7.96 ppm), Ni (2.00–6.48 ppm), Nb (7.85–11.5 ppm), Ta (0.63–1.09 ppm), and Ti (539–2637 ppm), high Sr/Y (46.6–64.7) and La/Yb (17.0–25.0) ratios, and low Y (9.6–16.2 ppm) and Yb (0.95–1.75 ppm) contents (Table ES1). Rapp et al. (1991) proposed that the lower crustal source comprising eclogite- or garnet-bearing amphibolites at depths of > 40–50 km can generate such high Sr/Y and La/Yb magma. These features of the Xiaohekou granitoids are similar to those of high-K calc-alkaline adakite-like magma formed by partial melting of thickened lower crust from continental collision zones or intracontinental setting, such as porphyries in the Gangdese belt and the Middle–Lower Yangtze River Valley metallogenic belt in eastern China (Rapp et al., 1991; Hou et al., 2004, 2013; Hou and Yang, 2009; Chung et al., 2009; Pirajno and Zhou, 2015; Zhou et al., 2015; Xu et al., 2016). Geophysical investigations have illustrated that the thickness of the Qinling crust is > 50 km as a result of intracontinental subduction and double-vergent thrusting and thickening during the Late Jurassic to Early Cretaceous (Zhang et al., 2001; Dong and Santosh, 2016).

Most Xiaohekou granitoids are metaluminous to weakly peraluminous with low A/CNK values (average of 0.95) and have low Rb/Sr (0.07–0.22) and Nb/Ba (0.04–0.17) ratios, featuring a magmatic assemblage of 10% to 15% amphibole and biotite (Fig. 7) but lacking Al-rich minerals (e.g., muscovite, cordierite, and garnet), consistent with an I-type magma affinity (Chappell, 1999; Chappell and White, 2001). Moreover, the significant negative correlation between P$_2$O$_5$ and SiO$_2$ contents (Fig. 8C), i.e., typical of an I-type granite evolution trend, indicates that the magma could have been derived from partial melting of metagneous rocks (Chappell and White, 2001; Li et al., 2007a). Given that mantle-derived materials contributed to the formation of I-type granite to varying degrees, zircons of the Xiaohekou granitoids...
studied here have positive εHf(t) values (0 to +2.45), which indicate that there must have been an input of mantle-derived melt. Chen et al. (2014) obtained high Mg/(Mg + Fe3+ + Fe2+) (> 0.5) and Fe3+/ (Fe3+ + Fe2+) (> 0.1) ratios and low AlVI values (average of 0.12) of biotite and Mg/(Mg + Fe2+) (0.53 values are positive, further indicating a significant contribution from the enriched lithospheric mantle for the Xiaohekou granitoids because zircons from depleted mantle have relatively high εHf(t) values. These granitoids also have consistent Hf isotopic compositions with the Chigou, Baishagou, and Lengshuigou granitoids (εHf(t) = 4.5 to +1.78), which are considered the mantle contributions that account for a large proportion of their formation (Wu et al., 2014; Ren et al., 2014; Xie et al., 2017). Similarly, this conclusion is compatible with the high (Mg + Ti)/Si and Mg + Ti values of magmatic biotite, as well as low Iα values (0.7045–0.7049) of apatite for the Late Mesozoic granite stock at Xiaohekou, which was sourced from a combination of mantle-derived magma and various proportion of crustal components (Zhang et al., 1997). This is also supported by granites in the Chigou, Baishagou, and Lengshuigou deposits (or occurrences) with Iα values of 0.7046–0.7053 and isotopic composition εHf(t) values of −6.7 to −3.8, which are markedly different from the values of depleted mantle and lower crust (Xie et al., 2015, 2017).

In the SQO, a large number of outcrops of pre-Cambrian basement rocks are represented by the Douling Complexes and the Wudang and Yaolinghe Groups. The Douling Complex has a formation age of 2.5 Ga and corresponding εHf(t) values of −4.5 to −1.2. Around t = 140 Ma, the calculated εHf(t) values are less than −20. The Wudang and Yaolinghe Groups were formed in the Neoproterozoic, as defined by detrital zircon U–Pb ages of 900–740 Ma (Ling et al., 2008; Wang et al., 2013b) and a whole-rock Sm–Nd isochron age of 1019 ± 81 Ma (Zhang et al., 1997). However, the granitoids in the Xiaohekou mining district have TDM2 values of 1.5–1.2 Ga (average of 1.28 Ga), corresponding to small negative εHf(t) values (−4.75 to −0.13), and TDM3 of 0.80–0.71 Ga (average of 0.76 Ga), corresponding to positive εHf(t) values (+0.07 to +2.45). This finding further indicates that granodiorite porphyry and granite porphyry at Xiaohekou resulted from partial melting of Mesoproterozoic lower crustal rocks with additional contributions from Neoproterozoic mantle-derived magmas. In addition, more than one fourth of the εHf(t) values are positive, further indicating a significant contribution from the enriched lithospheric mantle for the Xiaohekou granitoids because zircons from depleted mantle have relatively high εHf(t) values. These granitoids also have consistent Hf isotopic compositions with the Chigou, Baishagou, and Lengshuigou granitoids (εHf(t) = 4.5 to +1.78), which are considered the mantle contributions that account for a large proportion of their formation (Wu et al., 2014; Ren et al., 2014; Xie et al., 2017). Similarly, this conclusion is compatible with the high (Mg + Ti)/Si and Mg + Ti values of magmatic biotite, as well as low Iα values (0.7045–0.7049) of apatite for the Late Mesozoic granite stock at Xiaohekou, which was sourced from a combination of mantle-derived magma and various proportion of crustal components (Zhang et al., 1989). This is also supported by granites in the Chigou, Baishagou, and Lengshuigou deposits (or occurrences) with Iα values of 0.7046–0.7053.

Fig. 13. Adakite geochemical discrimination diagrams of (A) Sr/Y vs. Y (after Defant and Drummond, 1990); (B) La/Yb vs. Yb (after Martin, 1999); C MgO vs. SiO2 (after Zhou et al., 2015) and (D) Ni vs. Cr (after Guan et al., 2012) for the ore-related granitoids from the Xiaohekou Cu deposit. Symbols as in Fig. 8.
6.2. Magmatic oxygen fugacity and its implications for mineralization

A number of studies of porphyry–skarn Cu ± Mo deposits have shown that magmatic compositions and oxygen fugacity conditions are key factors influencing potential fertility (e.g., Hedenquist and Lowenstern, 1994; Ballard et al., 2002; Sun et al., 2013; Qiu et al., 2013; Yao et al., 2017; Cao et al., 2018). Crystallizing magmas with a characteristic I-type calc-alkaline signature would continuously concentrate volatiles dominated by magmatic-derived water. When volatility reaches saturation or oversaturation, melt-fluid immiscibility occurs in the volatile-rich silicate melt, fractionating a high temperature and high salinity magmatic–hydrothermal fluid with abundant volatiles and alkali. Such fluids have a strong capability to extract and carry metals, and supply the most important ore-forming components of hydrothermal fluids and metals to the skarn–porphyry mineralization system (Meinert, 1992, 1993; Hedenquist and Lowenstern, 1994; Davidson, 2001). In summary, the Xiaohekou ore-related granitoid porphyry and granodiorite porphyry belonging to high-K calc-alkaline I-type granitoids are derived from the thickened lower crust with an adakitic signature, and are accompanied by contemporaneous cryptovolcanic breccia in the ore district (Fig. 7A). These findings are consistent with the observation that most Cu and Fe deposits in the world are associated with I-type calc-alkaline porphyry plutons, many of which have stockwork veins, brecciation, and intense hydrothermal alteration (Meinert, 1992, 1993; Hou et al., 2004; Hou and Yang, 2009; Pirajno, 2013; Xu et al., 2016; Goryachev et al., 2018). Moreover, such C-type adakitic rocks have significant potential for Cu mineralization because deep, high pressure, and high oxygen fugacity conditions are favorable for the pre-enrichment of abundant volatiles, Cu and sulfur in the source region (Hou and Yang, 2009; Zhang and Li, 2012). As shown in Figs. 8 and 14, the Xiaohekou ore-related granitoids share identical geochemical characteristics to the granitoids associated with skarn Cu deposits elsewhere in the world (Meinert, 1995). All these indicate that granitoids in the study area possess magma conditions favourable for forming Cu deposit.

A number of researchers have reported a persistent genetic link between oxidized magmas and processes leading to Cu ± Mo mineralization (Meinert, 1992; Richards et al., 2012; Ballard et al., 2002; Liang et al., 2006; Sun et al., 2013, 2015; Wang et al., 2013a; Qiu et al., 2013; Dilles et al., 2014; Wang et al., 2015a; Xu et al., 2016; Cao et al., 2018). This most probably involves redox control of the speciation and solubility of magmatic sulfur and its influence on the fractionation of chalcophile elements (Ballard et al., 2002). Metallogenic experiments show that Cu can be classified as a strong sulfophilic element and tends to distribute into magmatic sulfide phases (S2−), rather than silicate melt or oxide minerals (D_{Cu/Si} = 480–1300, Ripley et al., 2002). Thus, most Cu will be sequestered in sulfides trapped in cumulates in the early stages and will be unavailable to a late-stage magmatic–hydrothermal fluid (Ballard et al., 2002). However, Cu will be partitioned into the melt under higher O2 conditions during differentiation and transferred into a magmatic–hydrothermal fluid should the magma reach fluid saturation because, under oxidized conditions, magmatic sulfur exists mainly in the form of sulfate (SO42−), which has a higher solubility in silicate melt than sulfide, and will suppress the formation of sulfide phases (S2−) (Carroll and Rutherford, 1987; Ballard et al., 2002; Jugo et al., 2010; Richards et al., 2012; Sun et al., 2015). Moreover, a high oxidation state facilitates the decomposition of early residual sulfide phases in the magma source and activates Cu, Au, and PGE elements into the melt (Richards, 2003; Botcharnikov et al., 2011), thereby increasing Cu concentrations in evolved magma and favoring Cu mineralization. Zircons from the Xiaohekou granitoids have ΔFMQ values concentrating on −0.62 to +5.54, with the average of +1.34 (Table ES3). On the plots of lg(fO2)−T vs. 8Ce−T (Fig. 14A, B), most samples from the Xiaohekou granitoids show the fO2 of FMQ (Fe2SiO4–Fe3O4–SiO2) to HM (Fe2O3–Fe3O4–O2), and some samples reach the HM buffer. In addition, the values of IgfO2 and 8Ce of the Xiaohekou granitoids are consistent with those of the Lanninag porphyry Cu deposit in the Sanjiang region in east Tibet and the Dongguashan skarn Cu deposit in the Tongling district in east China, suggesting a high oxidation state with the granitoids. These results agree with the popular occurrence of hydrothermal magnetite and hematite (martite or specularite) in the Xiaohekou skarn system (Fig. 6G, H, and P). The occurrence of magmatic and hematite generally represents the high fO2 of the magmatic–hydrothermal Cu system because the oxidation of Fe3+ during the crystallization of magnetite and hematite is the causal process of SO42− reduction and subsequent mineralization (Li et al., 2009; Sun et al., 2013; Nadoll et al., 2015). Similarly, the Eu/Eu* value is another indicator of the oxidation state since the oxidation of Eu3+ in the melt can be induced by the reduction of magmatic SO42− (Dilles et al., 2014), and zircon with Eu/Eu* > 0.4 is characteristic of many ore-forming magmas (Ballard et al., 2002). The Eu/Eu* values also show a positive correlation with the Ce⁴+/Ce³+ ratios (Ballard et al., 2002). In comparison with the porphyries associated with large-giant Cu deposits in the Gangdese metallogenic belt (Tibet), Black Mountain (Philippines), and Chuquicamata-El Abra (northern Chile) are from Yu et al. (2016), Cao et al. (2018), Ballard et al. (2002).

Fig. 14. Magma oxidation state of the Xiaohekou Cu deposit. (A) Ce/Ce* vs. 109/TK; (B) lg(fO2) vs. T; (C) Ce⁴+/Ce³+ vs. Eu/Eu*. Data of the skarn Cu deposit of Dongguashan (eastern China) are from Wang et al. (2013c); Data of porphyry Cu deposits of Lanninag (Yunnan), Gangdese (Tibet), Black Mountain (Philippines) and Chuquicamata-El Abra (northern Chile) are from Yu et al. (2016), Cao et al. (2018), Ballard et al. (2002).
6.3. Timing and tectonic setting of magmatism and mineralization

Numerous small granitic intrusions, which control the distribution of porphyry–skarn deposits (or occurrences), extensively occur throughout the Zha-Shan ore district. However, in the past decade, limited radiometric ages for porphyry–skarn Cu and Mo deposits in this area have been documented. Thus, the tectono-chronological framework for the mineralization and associated intrusions has not been well established.

Zircon U–Pb dating of the mineralization-related granodiorite porphyry and granite porphyry in the study area have shown consistent emplacement ages of 141.3 ± 1.3 Ma and 138.1 ± 2.0 Ma within error. The new U–Pb ages (141–138 Ma) are similar to the zircon U–Pb ages (148–142 Ma) and molybdenite Re–Os isochron (or model) ages (151–146 Ma) obtained from the Chigou and Lengshangou porphyry Cu–Mo deposits (Fig. 2; Li et al., 2011; Ren et al., 2014; Wu et al., 2014; Xie et al., 2015, 2017). Precise zircon U–Pb chronology in the Zha-Shan ore cluster shows that other granitoid intrusions at Shuangyangou, Yuanzijie, Xiangtianfang, Tudingou, and Baishagou mineralized localities (Fig. 2) formed within a narrow time range of 148–138 Ma (Wu, 2013; Xie et al., 2015, 2017). The Xiaohekou granitoids and those contemporaneous granitoids with ages of 148–138 Ma share some remarkable geochemical signatures (Figs. 8, 9, and 13), such as low SiO₂ and MgO contents, high K₂O content, high Sr/Y and La/Yb ratios, negligible Eu anomalies, and pronounced Nb, Ta, Ti, Cr, and Ni negative anomalies. Thus, the age data and geochemical features indicate that these granitoids were probably generated from a single tectono–magmatic event and attest to the fact that magmatism and metallogenesis in the Zha-Shan district overlapped in terms of time.

The Late Jurassic–Early Cretaceous granitoids and associated 151–138 Ma porphyry–skarn Cu and Mo deposits in the Zha-Shan district share an almost identical age range with a large number of granitoids aged at 158–130 Ma in the NQO and S-NCB between 109 °E and 112 °E (Li et al., 2018 and references therein). The tectonic setting accounting for the Late Mesozoic magmatism and metallogenesis is still controversial. At least four alternative models have been proposed: (1) syn-collision (Li et al., 2007, 2012c; Yang et al., 2012) or (2) post-collision evolution following the continental collision between the SCB and NCB (Chen et al., 2004, 2009; Chen, 2010; Bao et al., 2014; Yang et al., 2015; Zhou et al., 2016; Li et al., 2015, 2018); (3) Paleo-Pacific slab subducting northwestward beneath the East China (Mao et al., 2008, 2011; Li et al., 2012a, 2019; Pirajno and Zhou, 2015); (4) Intracontinental orogeny, suggesting that after the culmination of continental collision orogenesis in T₃₋₄, the entire Qinling Orogen evolved into an intracontinental orogenic evolution process (Zhang et al., 1995, 2001; Wang et al., 2011a; Li et al., 2012b; Heberer et al., 2014; Dong et al., 2016; Dong and Santosh, 2016). We prefer to relate the Late Jurassic–Early Cretaceous granitoids in the Zha-Shan district to the intracontinental orogeny, on the basis that the renewed southward intracontinental subduction of the NCB and the continuous northward subduction of the SCB, beneath the Qinling Orogen, led to the dramatic

Fig. 15. Plots of εf(t) vs. zircon Ce⁴⁺/Ce³⁺, Ce/Ce*, ΔFMQ, and Eu/Eu*.
N-S compression and thrust–nappe structures as well as mountain uplift and denudation in the entire Qinling Orogen revealed by the geophysical investigations (Yuan, 1996; Zhang et al., 1995, 2001; Dong and Santosh, 2016). The extensive intracratonic tectono-magmatism and Au–Mo metallogenia in the Qinling Orogen formed within this geodynamic context (Dong and Santosh, 2016).

The adakitic geochemical signature of the Xiaohekou granitoids shown by this study can be interpreted as evidence that the materials originated from the thickened lower crust, with the thickening caused by the intense intracratonic subduction in the Late Jurassic mentioned previously. This model is consistent with that proposed by Zhou et al. (2015), who argued that the Jurassic–Cretaceous porphyry–skarn Cu–An mineralization in the Middle–Lower Yangtze River Metamorphic Belt in east China, with most porphyries exhibiting adakitic affinity, occurred in the typical intracratonic environment. As proposed by Hou and Yang (2009), in an intracratonic environment, ore-forming magmas are derived from partial melting of a delaminated lithosphere root. In the R1–R2, and Y–Nb and Y + Nb–Rb diagrams (Fig. 16), all of the granitoids samples plot into the post-collisional (uplift) granite fields, indicating that the Xiaohekou granitoids exhibit post-collisional magma affinity and seem to be induced by an intracratonic orogeny after the peak of N–S compression. Previous studies have already shown that the later period of major orogenic episodes is usually marked by strong uplift and erosion, large movements along transient shear zones and extensional tectonic regimes induced partly by the gravitational collapse of thickened crust and the delamination of the lithosphere. Moreover, the post-collisional association is characterized by abundant high-K calc-alkaline to alkaline igneous suites, enrichment in LILE and LREE, and depletion in HFSE, as well as markedly rich alkali, Sr, and Ba relative to island arc igneous rocks (Liégeois, 1998; Bonin, 2004). These geochemical characteristics are observed for the Xiaohekou granitoids, reflecting that they are probably post-collisional granitoids emplaced in an extensional regime. From the perspective of geochemistry and geochronology, our results are compatible with the post-collisional model. However, considering the intense intracratonic orogeny and subsequent extensional regime and large-scale lithospheric delamination (Mao et al., 2008, 2011). In addition, far-field effect from the plate boundary can be more effectively applied to intracratonic deformation (Li et al., 2019). Thus, we inferred that the ore-related granitoids in the Xiaohekou mining district were formed in the post-collisional compression–extension transition regime during the Early Cretaceous Qinling intracratonic orogeny (Fig. 17). This orogeny and subsequent extensional regime and large-scale lithospheric delamination were possibly induced by far-field effect of plate tectonics based on low-angle subduction of the Paleo-Pacific Plate (Li and Li, 2007). Given the lithospheric collapse and delamination beneath the Qinling Orogen, upwelling of the asthenospheric mantle supplied sufficient heat to develop partial melting of remanent enriched lithospheric mantle. The mafic magmas rising through the thickened lower continental crust led to partial melting and generated hybrid (crust + mantle)-derived fertile magmas with adakitic signature (Fig. 17).

7. Conclusions

(1) The Xiaohekou Cu deposit is a typical skarn-type Cu deposit. Orebodies are mainly developed in the skarn and marble in exocontact zones of granitoids. Four mineralization stages of the deposit are identified as follows: an anhydrous skarn stage, a hydrous skarn–oxide stage, a quartz–polymetallic sulfide stage, and a carbonate–quartz stage.
(2) The ore-forming granitoids were most likely produced by the mixing of magmas generated from the delamination of enriched lithospheric mantle and partial melting of the thickened mafic lower crust. During mixing and homogenization, high fO₂ melts or fluids were supplied from the mafic magmas into the mingling magmas to form the fertile Cu-bearing magma.

(3) The Xiaohekou granitoids have both the magma compositions and fO₂ conditions suitable for forming a large magmatic–hydrothermal Cu deposit. Granitic rocks with zircon Ce⁴⁺/Ce³⁺ > 452, δEu > 0.72, and ∆FMQ > +1.34 can be encouraging indicators for future exploration targetting of the magmatic–hydrothermal deposits formed in the Zha-Shan ore district.

(4) The ore-related granitoids in the Xiaohekou mining district have consistent emplacement ages of 141.3 ± 1.3 Ma to 138.1 ± 2.0 Ma. These granitoids were formed in a post-collisional, compression to extension transitional regime during the Qinling intracratonic orogeny in the early Cretaceous. The transition was related to the transformation of the tectonic–dynamic system from pre-Mesozoic Tethyan tectonics to Late Mesozoic Pacific tectonics, corresponding to a change from a N–S to E–W trending stress field and from intracratonic subduction thickening to large-scale lithospheric delamination and thinning.

Acknowledgments

This study was jointly supported by National Natural Science Foundation of China (Grant Nos. 41730426, 41803039, 41210002 and 41272092), China Postdoctoral Science Foundation (Grant no. 2018M643712), and MOST Special Fund from the State Key Laboratory of Continental Dynamics, Northwest University, China. We sincerely thank Prof. Yanjing Chen and two anonymous reviewers for their constructive comments. Thanks are also given to Kai Liu and Yanhui Guo for their help during fieldwork, Prof. Simon Williams for English polishing, and Jianqi Wang, Ye Liu, and Huadong Gong for their assistance during the analyses.

References

